If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+48x-3600=0
a = 1; b = 48; c = -3600;
Δ = b2-4ac
Δ = 482-4·1·(-3600)
Δ = 16704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16704}=\sqrt{576*29}=\sqrt{576}*\sqrt{29}=24\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-24\sqrt{29}}{2*1}=\frac{-48-24\sqrt{29}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+24\sqrt{29}}{2*1}=\frac{-48+24\sqrt{29}}{2} $
| x^2+48x-3600=0 | | z=(÷3÷-2 | | z9=(÷3÷-2 | | z9=(÷3÷-2 | | z9=(÷3÷-2 | | 7+2(5x+2x^2)=16 | | 3m=180°-2m | | 8x^2-57x+95=0 | | 2x×x=0.005 | | 8x^2-57x+95=0 | | 2x×x=0.005 | | 5x+7x-53°=127° | | 5x+7x-53°=127° | | 5x+7x-53°=127° | | 5x+7x-53°=127° | | 2x+45°=180° | | 2x+45°=180° | | 2x+45°=180° | | 2x+45°=180° | | 2x+45°=180° | | 1/2x+1=3/2x-9 | | 7(7﹣x)=56 | | 7(7﹣x)=56 | | (5x-10)=(-3x-13) | | (5x-10)=(-3x-13) | | (5x-10)=(-3x-13) | | F(x)=-5x^2+6x-2 | | 1,500=1/5x | | 1,500=1/5x | | 1,500=1/5x | | 1,500=1/5x | | -9(n+4)=-5n-4(4n+36) |